

Architectural Engineering Construction Management Senior Thesis April 12th, 2010 Consultant: Dr. Magent

RYDAL PARK: MEDICAL CENTER ADDITION

ARCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

MATTHEW DABROWSKI

AERIAL VIEW OF THE MEDICAL CENTER ADDITION

I. INTRODUCTION

II. ANALYSIS I: INTEGRATED PROJECT DELIVERY III. ANALYSIS II: MECHANICAL SYSTEM ENERGY EFFICIENCY IV. ANALYSIS III: PHOTOVOLTAIC ARRAY FEASIBILITY V. FINAL CONCLUSIONS AND RECOMMENDATIONS VI. ACKNOWLEDGEMENTS VII. QUESTIONS

Architectural Engineering Spring 2010 – Senior Thesis

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

ARCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

I. INTRODUCTION

A. PROJECT BACKGROUND

II. ANALYSIS I: INTEGRATED PROJECT DELIVERY

III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY

IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS

V. FINAL CONCLUSIONS AND RECOMMENDATIONS

Project Background

<u>roject Title:</u>	Rydal	Park CCRC Medical Center
<u>UNCTION:</u>	Facilii	ly for the Memory Impaired
<u>OCATION:</u>		Rydal Park, Jenkintown, PA
<u>roject Cost:</u>		\$26,590,000
Construction 1	DURATION:	Nov 2009 – May 2011
UILDING SIZE:	142,862 SF / 5 S	tories (2 Parking / 3 Living)
ROJECT DELIVER	<u>y Method:</u>	Design-Bid-Build &
		NEGOTIATED GMP

Architectural Engineering Spring 2010 – Senior Thesis

MATTHEW DABROWSKI - CONSTRUCTION MANAGEMENT

Figure: Location – Jenkintown, PA

II. ANALYSIS I: INTEGRATED PROJECT DELIVERY

III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY

IV. Analysis III: Photovoltaic Array Analysis

V. FINAL CONCLUSIONS AND RECOMMENDATIONS

Proji	Project Team			
<u></u>	Presby's Inspired Life			
<u>TECT:</u>	Stewart & Conners Architects			
RUCTION MANAGER:	Whiting- Turner			

DEVELOPER: STRUCTURAL ENGINEER: MEP ENGINEER:

OWNE

ARCHI

CONST

S ARCHITECTS fing- Turner **GREENBRIER DEVELOPMENT**

WK DICKSON & CO.

Moore Enigneering Co.

FIGURE: PROJECT DELIVERY ORG CHART

I. INTRODUCTION

C. ANALYSES OVERVIEW

II. ANALYSIS I: INTEGRATED PROJECT DELIVERY

- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

Overview of Analysis

ANALYSIS I: INTEGRATED PROJECT DELIVERY

- CRITICAL INDUSTRY ISSUE / MAE
- PINPOINT ELEMENTS OF SUCCESS TO GUIDE FUTURE PROJECTS

ANALYSIS II: HVAC SYSTEM ENERGY EFFICIENCY

- MECHANICAL BREADTH
- DECREASE ENERGY CONSUMPTION WITH AN ALT. HVAC SYSTEM

Analysis III: Photovoltaic Panel Feasibility

- STRUCTURAL BREADTH / MAE
- DETERMINE APPROPRIATENESS WITH A LIFE CYCLE COST

RCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

Matthew Dabrowski – Construction Management

FIGURE: VARIOUS ANALYSIS IMAGES

I. INTRODUCTION

I. ANALYSIS I: INTEGRATED PROJECT DELIVERY

A. INTRODUCTION AND BACKGROUND

III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY

- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

INTRODUCTION AND BACKGROUND

PACE FALL 2009: PARTICIPANT, "A SUCCESSFUL DESIGN-BUILD PROJECT?"

OWNER, ARCHITECT, CONTRACTOR PROJECT TEAM:

- DISCONNECTED, LACKING COLLABORATION
- FRAGMENTIZED PRECONSTRUCTION PERIOD

RESEARCH GOAL (CRITICAL INDUSTRY ISSUE)

- PINPOINT SUCCESSFUL ELEMENTS WITHIN THE INTEGRATED PROJECT DELIVERY MODEL
- OUTLINE IPD CHARACTERISTICS FOR IMPROVING EFFICIENCY WITHIN THE RYDAL PARK OAC PROJECT TEAM
- IMPROVE EFFICIENCY WITHIN THE CM INDUSTRY

Construction & Non-Farm Labor Productivity Index (1964-2003) 250.00% 200.00% **Construction** Production 150.00% 50.00%

g 2010 – Senior Thesis **4** Matth

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

FIGURE: S:PACE LOGO & PRODUCTIVITY INDEX

I. INTRODUCTION

I. ANALYSIS I: INTEGRATED PROJECT DELIVERY

C. AIA IPD

- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

INTEGRATED PROJECT DELIVERY

Defining Elements:

- EARLY INVOLVEMENT OF KEY PARTICIPANTS
- SHARED RISK / REWARD THROUGH MULTI-PARTY CONTRACTING
- COLLABORATIVE DECISION MAKING
- LIABILITY WAIVERS / INDEMNIFICATION

Traditional vs. IPD

- REALLOCATION OF UPFRONT EFFORTS
- LINEAR DESIGN PROCESS VS. RADIAL INPUTS

chitectural Engineering Spring 2010 – Senior Thesis

MATTHEW DABROWSKI - CONSTRUCTION MANAGEMENT

FIGURE: DESIGN PROCESS

I. INTRODUCTION

I. ANALYSIS I: INTEGRATED PROJECT DELIVERY

C. AIA's IPD: Contract Language

III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY

IV. Analysis III: Photovoltaic Array Analysis

V. FINAL CONCLUSIONS AND RECOMMENDATIONS

AIA'S CONTRACT LANGUAGE

AIA'S 195 FAMILY OF DOCUMENTS

• NO SIGNIFICANT DIFFERENCES TO AIA CM @ RISK CONTRACT

TOM KRAJEWSKI, DPR PROJECT EXECUTIVE:

"I CALL THESE AIA 195 DOCUMENTS CM (@ RISK) WITH A HUG. THE CONTRACTOR BECOMES THE HOOK TO KEEP THE DESIGN WITHIN THE GMP. THE GENERAL CONDITIONS ARE SUPPOSED TO BIND EVERYONE BUT THE LANGUAGE STILL ALLOWS PEOPLE TO POINT FINGERS AT OTHER PARTIES."

RCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

FIGURE: AIA, IPD AND DPR LOGOS

I. INTRODUCTION

I. Analysis I: Integrated Project Delivery

D. CASE STUDIES

- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. Analysis III: Photovoltaic Array Analysis
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

CASE STUDIES

FIVE CASE STUDIES ANALYZED (2005-2009):

- Autodesk inc. Solutions Headquarters
- SUTTER HEALTH FAIRFIELD MEDICAL OFFICE BUILDING
- ST. CLARE HEALTH CENTER
- ENCIRCLE HEALTH AMBULATORY CARE CENTER
- CARDINAL GLENNON CHILDREN'S HOSPITAL

CASE STUDIES WERE EXPLORED FOR:

- Lessons learned
- Elements of success

Project Info	Autodesk Inc. Headquarters	Sutter Health Med Office	St. Clare Health Cent	Encircle	Cardina Glennor
Total Cost	\$13.3 mil	\$19.5 mil	\$157 mil	\$38.6 mil	\$45.6 mi
Design Est. Delta	-0.9%	N/A	+1.12%	+19.87%	N/A
Constr. Est. Delta	-0.9%	+2.33%	+5.18%	+3.85%	-3.04%
Procurement RFIs	76	122	270	0	0
Construction RFIs	49	125	270	0	0
LEED Goal	Platinum	None	None	Gold	None

Architectural Engineering Spring 2010 – Senior Thesis

Matthew Dabrowski – Construction Management

FIGURE: SUMMARY OF IPD CASE STUDIES

I. INTRODUCTION

I. ANALYSIS I: INTEGRATED PROJECT DELIVERY

E. Rydal Park OAC Project Team

- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

OAC PROJECT TEAM

AE 572: PROJECT DELIVERY AND CONTRACT STRATEGIES

- PINPOINTED CRITICAL PROJECT SUCCESS FACTORS
- DESIGN BUILD EXTREMELY VIABLE OPTION <u>OWNER</u> (PRESBY'S INSPIRED LIFE):
- Lacking experience, looking to improve <u>Architect</u> (Stewart-Conners):
- Young Company, specializing in Lodging <u>Construction Manager</u> (Whiting-Turner):
- Experienced, well established in SE pennsylvania
 <u>Developer</u> (Greenbrier):
 - Experience, Specializes IN CCRC's, Located in Texas

Factor Action Statement	Trad. DBB with Early Procurement	Trad. DBB with Early Procur. and Agent	Construction Manager at Risk	Design-Build (Best IPD Alternative)
Control Cost Growth	50	50	60	90
Ensure Lowest Cost	100	60	40	80
Facilitate Early Cost Estimates	20	20	70	90
Reduce / Transfer Risk	50	20	70	90
Control Time Growth	50	50	70	90
Ensure Shortest Schedule	50	40	80	100
Promote Early Procurement	90	90	100	100
Ease Change Incorporation	80	70	60	10
Capitalize on Familiar Project Conditions	50	40	70	100
Maximize Owner's Control	100	80	60	10
Maximize Owner's Involvement	90	80	40	10
Efficiently Utilize Poorly Defined Scope	80	70	60	o

ARCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

Matthew Dabrowski – Construction Management

FIGURE: DELIVERY AND CONTRACT STRAGEIES

I. INTRODUCTION

I. ANALYSIS I: INTEGRATED PROJECT DELIVERY

F. DETAILED PRECONSTRUCTION TIMELINE

III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY

- IV. Analysis III: Photovoltaic Array Analysis
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

PRECONSTRUCTION TIMELINE

TIMELINE DEVELOPED AFTER A PROJECT MANAGER INTERVIEW (CHIP CINAMELLA) AND REVIEWING PRECON DOCUMENTS

INEFFICIENT ELEMENTS:

- CM HIRED APRIL 2008, NOT UTILIZED FOR 7 MONTHS
- Locations of the Architect and Developer
- Owner placed project out to bid 9 months after CM was already awarded contract
- IMPROPERLY UTILIZED "VALUE ENGINEERING" SESSION BEGINS
- January-October 2009: Project hanging on 1.5% of total estimate

ARCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

MATTHEW DABROWSKI - CONSTRUCTION MANAGEMENT

Figure: Precon Timeline Jan – July 2009

INTRODUCTION

III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY

IV. Analysis III: Photovoltaic Array Analysis

FINAL CONCLUSIONS AND RECOMMENDATIONS

IPD STRATEGIES OUTLINE

12 KEY ELEMENTS:

1. **OWNER INVOLVEMENT:** DETERMINE LEVEL AND ADHERE 2. **BUDGET ESTIMATE:** DETERMINE IF PROJECT IS FEASIBLE **3. CORE TEAM:** ESTABLISH EARLY, UTILIZE ALL PARTIES 4. CONTRACTING: INDEMNIFICATION. "NO-SUE" AND RELATIONAL 5. PROJECT TEAM NORMS: TRANSPARENT / COOPERATIVE MGMT 6. 100% Open Books: All parties develop GMP, New Fee 7. **BIM EXECUTION:** UTILIZED NEW AND EFFECTIVE TECHNOLOGY 10

12 KEY ELEMENTS:

8. & 9. DESIGNER / CM ROLES (DIFFERENT DURING DESIGN & CONSTR. PHASES): OUTLINE PROFESSIONAL BOUNDARIES **10. MEETINGS:** WEEKLY FACE-TO-FACE COLLABORATIVE DISCUSSIONS 11. DRAWINGS AND SPECIFICATIONS: MANAGE RELEASES OF ADDENDA MATERIAL PROPERLY, DON'T HIND INFO FROM SUBS 12. CLOSEOUT: ALL PARTIES ON EXCELLENT BUSINESS TERMS BY END OF PROJECT, OWNER CONFIDENT WITH IPD

DO NOT UNDERMINE: TRUST

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENC

A. INTRODUCTION AND RESEARCH GOAI

- IV. Analysis III: Photovoltaic Array Analysis
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

INTRODUCTION AND Research Goal

Research Goal (Mechanical Breadth):

- MODEL BUILDING WITH ENERGY 10 SOFTWARE
- ANALYZE THE MEDICAL FACILITY'S HEATING AND COOLING EFFICIENCY
- REDUCE ELECTRICITY CONSUMPTION
- INDENTIFY AN ALTERNATE HVAC SYSTEM FOR HEATING AND COOLING

RCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

FIGURE: ENERGY 10 SOFTWARE LOGO

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENC

B. RESEARCH PROCESS

- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

Research Process

Building modeled in Energy 10

- ORIGINAL FOUR-PIPE, AIR-WATER SYSTEM BEST APPROXIMATED BY FIXED COP WITH HEAT PUMP
- Several HVAC systems analyze
- PACKAGED TERMINAL AIR CONDITIONER PINPOINTED

Amana PTAC

12

- OCCUPANCY SENSORS
- INTEGRATE PROPERTY MANAGEMENT SOFTWARE W/ ENERGY MANAGEMENT
- Remote maintenance Alerts
- Improve PTAC efficientcy by 35%

Architectural Engineering Spring 2010 – Senior Thesis

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMEN

FIGURE: RESULTS / AMANA PTAC

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY

B. RESEARCH PROCESS

- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

RESEARCH PROCESS

Alternate Mechanical System:

 PACKAGED TERMINAL AIR CONDITIONER (PTAC) WITH AN AIR-AIR HEAT PUMP AND ER BACKUP

DEPARTMENT OF ENERGY REPORT (RELEASED 2002): LISTED PTAC "AS ONE OF THE MOST PROMISING OPPORTUNITIES FOR TECHNOLOGY AS A SMALLER HVAC UNIT"

- ENERGY SAVINGS POTENTIAL: 33%
- SIMPLE PAYBACK: 2.6 YEARS

13

RCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

MATTHEW DABROWSKI - CONSTRUCTION MANAGEMENT

FIGURE: HVAC ENERGY USAGE

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY

C. RESEARCH RESULTS

- IV. Analysis III: Photovoltaic Array Analysis
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

RESEARCH RESULTS

ENERGY REDUCTION RESULTS:

- Four Scenarios Generated
- Second scenario best outcome
- Energy Reduced by 16.6%

Schedule Impacts

- Remove critical activity: Ductwork (22 days per floor)
- REDUCE INSTALLATION COMPLEXITY
- Eliminate equipment procurement

Savings

14

• 50 year savings approximately around \$3 million

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

Original HVAC System Heating Installation \$16.35/sf \$ 1,144,500.00 **Energy Savings Breakdown** \$11.50/sf \$ 805,000.00 Materials \$27.85/sf \$ 1.949.500.00 Total Scenario Two 966,000 Cooling PTAC with ER Heat Backup _____ Heating 821.10 \$ 1,109,500.00 Installation 1 438 650 00 Materials \$4.43/sf \$ 310,100.00 Fan \$20.28/sf \$ 1,419,600.00 otal Total 3,153,300.00 Difference Installation \$0.50/sf \$ 35,000.00 Cooling 494 900 Materials \$7.57/sf Fourth Scenario

FIGURE: ENERGY / COST SAVINGS

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS
 - A. INTRODUCTION AND BACKGROUND
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

INTRODUCTION

WHY THIS PROJECT:

15

- New LEED v3.0 standards
- OFFSET RISING ELECTRICITY COSTS
- 100% Open unobstructed roof

RESEARCH GOAL (STRUCTURAL BREADTH):

- Perform a photovoltaic feasibility
- DETERMINE THE APPROPRIATE SYSTEM SIZE
- ESTABLISH SUPPORT REQUIREMENTS
- EXAMINE ASSOCIATED LIFE CYCLE COSTS

FIGURE: SKETCH-UP SOLAR MODEL

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS

C. TARGETING A BUILDING ELEMENT

V. FINAL CONCLUSIONS AND RECOMMENDATIONS

TARGETING A BUILDING ELEMENT

BUILDING POWER:

- PANELBOARDS SUMMED: 1200W (.8 PF)
- Would require 5,700 16ft² solar panels

Building Element:

- TWO-STORY PARKING DECK
- 156 TWO LAMP FLUORESCENT LUMINAIRES
- 5.25% of total building load (max peak load)

TARTING POINT:

16

ESTABLISH PERTINENT LOCATION INFORMATION

Station Identifi	cation
City:	Philadelphia
State:	Pennsylvania
Latitude:	39.88° N
Longitude:	75.25° W
Elevation:	9 m
PV System Specif	ications
DC Rating:	63.0 kW
DC to AC Derate Factor:	0.77
AC Rating:	48.5 kW
Array Type:	Fixed Tilt
Array Tilt:	35.0°
Array Azimuth:	180.0°
Philadelphia Utili	ty Costs
Cost of Electricity:	0.2 ¢/kWh

	AC Energy Generated				
	Solar Radiation	AC Energy	Energy Value		
Month	(kWh/m²/day)	(kWh)	(\$)		
January	3.30	5197	8.16		
February	4.16	5805	9.29		
March	4.74	6998	11.20		
April	5.06	7014	11.22		
May	5.20	7176	11.48		
June	5.43	7032	11.25		
July	5.51	7279	11.65		
August	5.67	7548	12.08		
September	5.07	6690	10.70		
October	4.59	6538	10.46		
November	3.37	4804	7.69		
December	2.67	4085	6.39		
Year	4.57	76166	121.57		

RCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

MATTHEW DABROWSKI - CONSTRUCTION MANAGEMENT

FIGURE: PRELIM LOCATION INFO

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS

C. SIZING THE SYSTEM

V. FINAL CONCLUSIONS AND RECOMMENDATIONS

SIZING THE SYSTEM

KYOCERA SOLAR FIVE STEP PROCESS INVOLVES:

- DETERMINE SUN HOURS (4.5)
- CALCULATE ENERGY LOAD OF PARKING DECKS(138 KWH)
- NUMBER OF MODULES REQUIRED (300)

FINAL SYSTEM SIZE:

17

• 300 Module system in Philadelphia: <u>63kW</u>

DETERMINING SHADING LAYOUT:

- Six 50 module arrays
- PARAPET WALL, STAIRWELLS, OTHER SUPPORT STRUCTURES

FIGURE: LAYOUT CONFIGURATION

ARCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS

D. SUPPORTING THE PV MODULES

V. FINAL CONCLUSIONS AND RECOMMENDATIONS

SUPPORTING THE PV MODULES

UNIRAC: VARIOUS MOUNTING SOLUTIONS

- LARGE ARRAY MOUNTING SYSTEM SELECTED
- ADJUSTABLE TILT ANGLE

18

SUPPORTED BY ALUMINUM WIDE FLANGE

INFORMATION RECEIVED AFTER CONTACTING:

- CUSTOM QUOTATION PROVIDING COST PER WATT
- ENGINEERING REPORT DETERMINED MAX LOAD (PSF)

Load Combination	Variabl	e (psf)		Front	Leg Load Combin	nations (psf)
Dead Load: Snow Load: Max Load Res Down Force nt Leg: 54.31 ar Leg: 53.21 lax (Absolute): 5	4.95 25 ults (ps	Assur () Uplift -22.16 -29.48	med	Load Case 1 (downforce): Load Case 2 (downforce): Load Case 3 (downforce): Max Downforce: Load Case 4 (uplift):	Wind Load Case A 32 39.22 49.92 49.92 -22.16	Wind Load Case B 32 45.08 54.31 54.31 -6.05
Load Combinati	on Fact	tors	1	Rear	Leg Load Combin	ations (psf)
	Dead Load	Snow Load	Wind Load	Load Case 1 (downforce):	Wind Load Case A 32	Wind Load Case B 32
Case 1 (downforce): Case 2 (downforce): Case 3 (downforce):	1 1 1	1 0 0.75	0 1 0.75	Load Case 2 (downforce): Load Case 3 (downforce):	43.61 53.21	27.5 41.13
Load Case 4 (uplift):	0.6		1	Max Downforce: Load Case 4 (uplift):	-19.23	-29.48

Load

Load

FIGURE: SUPPORT STRUCTURE / LOAD COMB.

Architectural Engineering Spring 2010 – Senior Thesis

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSI:

E. STRUCTURAL LOADING CHECK

V. FINAL CONCLUSIONS AND RECOMMENDATIONS

STRUCTURAL LOADING CHECK

DETERMINING LOAD COMBINATION:

- ASCE 7-05 LOAD COMBINATION
- MAX DEFLECTION: ROOF MEMBERS

NOT SUPPORTING A PLASTER CEILING

Load Combination Utilized: $(1.2^*\text{D}) + (1.6^* \mathrel{\text{L}_{\text{ROOF}}} \text{ or S}_{\text{L}})$

Allowable Deflection: I / 180

19

PHOTOVOLTAIC ARRAY LAYOUT OVERLAID ONTO THE STRUCTURAL ROOF DRAWING

Load Resistance Factor Design					
Live Load:	25 psf				
Dead Load:	29 psf				
PV Rack Support:	55 psf				
PV Panels:	5 psf				
Snow Load	23 psf				
Load Comb:	74.8 psf	w/out PV			
Load Comb:	146.8 psf	w/ PV			

Architectural Engineering Spring 2010 – Senior Thesis

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

FIGURE: LAYOUT OVERLAID ON STRUCTURAL

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. Analysis II: Mechanical System Efficiency
- IV. Analysis III: Photovoltaic Array Analysi:

E. STRUCTURAL LOADING CHECK

V. FINAL CONCLUSIONS AND RECOMMENDATIONS

Structural Loading Check

TARGETED STRUCTURAL ELEMENTS:

SAMPLE CALCULATION:

20

- STRENGTH CHECKED (DIRECT LOADING)
- Deflection checked (solving for moment of inertia, l_{χ})

Deflection_{MAX} < $(5)(\omega)(\ell)^4/(384)(EI)$ < L/180I_x < $(5 * \omega * \ell^4)/(384 * 29,000,000 \text{psi} * D_{MAX})$

Architectural Engineering Spring 2010 – Senior Thesis

MATTHEW DABROWSKI - CONSTRUCTION MANAGEMENT

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. Analysis II: Mechanical System Efficiency
- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS

H. LIFE CYCLE COST FEASIBILITY

V. FINAL CONCLUSIONS AND RECOMMENDATIONS

LIFE CYCLE COST FEASIBILITY

Two Financing scenarios analyzed:

0% BORROWED

• 100% Borrowed (Embedded into GMP)

EXPENSES:

21

- Total cost \$545,000
- Loan value of \$131,00

Potential Savings:

• Approximately \$38,000 utility savings per year

FIGURE: REBATE & LOAN CALCULATOR

RCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

A. FINAL CONCLUSIONS AND LESSONS LEARNED

FINAL CONCLUSIONS AND Lessons learned

INTEGRATED PROJECT DELIVERY

- NEW DELIVERY STYLE NEEDED FOR THE NEXT CENTURY
- Assisted targeting the Rydal Park inefficiencies

MECHANICAL SYSTEM EFFICIENCY

- PTAC SYSTEMS POTENTIALLY REDUCE ENERGY BY 16.6%
- MANY BENEFICIAL COST AND SCHEDULE IMPACTS

PHOTOVOLTAIC ARRAY FEASIBILITY

- ENERGY EQUIVALENCE FOR 156 LUMINAIRES
- POTENTIAL PAYBACK UNDER FIVE YEARS

RCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

22

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

FIGURE: VARIOUS ANALYSIS IMAGES

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. Analysis III: Photovoltaic Array Analysis
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

B. ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

WHITING-TURNER:

- Chip Cinamella
- Jesse Beam
- JACK DASILVA

STEWART-CONNERS ARCHITECTS:

• JEFF MULLEN

Penn state Faculty and peers

- CHRISTOPHER MAGENT
- ANDREW MACKEY

PRESBY'S INSPIRED LIFE:

GARRY HENNIS

Thank you for support

FROM FAMILY AND FRIENDS

RCHITECTURAL ENGINEERING SPRING 2010 – SENIOR THESIS

23

MATTHEW DABROWSKI – CONSTRUCTION MANAGEMENT

FIGURE: VARIOUS PARTICIPANT LOGOS

I. INTRODUCTION

- II. ANALYSIS I: INTEGRATED PROJECT DELIVERY
- III. ANALYSIS II: MECHANICAL SYSTEM EFFICIENCY
- IV. ANALYSIS III: PHOTOVOLTAIC ARRAY ANALYSIS
- V. FINAL CONCLUSIONS AND RECOMMENDATIONS

C. QUESTION

FIGURE: